Метод турниров можно использовать для решения задач, в которых информация, полученная в результате первого прохода по данным, может облегчить последующие проходы. Поиск наибольшего значения Если воспользоваться им для поиска наибольшего значения, то потребуется построение бинарного дерева, все элементы которого являются листьями. На каждом уровне два элемента объединены в пару, причем наибольший из двух элементов копируется в родительский узел. Процесс повторяется до достижения корневого узла. Полное дерево турнира для фиксированного набора данных: Алгоритм поиска второго по величине элемента списка из N значений, требующий около N сравнений В результате каждого сравнения мы получаем "победителя" и "проигравшего". Проигравших мы забываем, и вверх по дереву двигаются только победители. Всякий элемент, за исключением наибольшего, "проигрывает" в точности в одном сравнении. Поэтому для построения дерева турнира требуется N-1 сравнение. Вт...
Быстрорастущие функции доминируют над функциями с более медленным ростом. Поэтому если сложность алгоритма представляет собой сумму двух или нескольких таких функций, то можно отбросить все функции, кроме тех, которые растут быстрее всего. Если, например, алгоритм делает x 3 -30x сравнений, то его сложность растет как x 3 . Причина этого в том, что уже при x = 100 входных данных разница между x 3 и x 3 -30x составляет лишь 0,3%. Скорость роста сложности алгоритма определяется старшим, доминирующим членом формулы. Поэтому можно пренебрегать младшими членами, которые растут медленнее. Отбросив все младшие члены, мы получаем то, что называется порядком функции или алгоритма, скоростью роста сложности которого она является. Алгоритмы, сложность которых: - растёт по крайней мере так же быстро, как данная функция При занятии эффективностью алгоритмов, класс Ω(f) не представляет большого интереса: например в Ω(n 2 ) входят все функции, растущие быстрее, чем n 2 , скажем...