К основному контенту

Средний случай

Анализ среднего случая является самым сложным, поскольку он требует учета множества разнообразных деталей. 
  1. В основе анализа лежит определение различных групп, на которые следует разбить возможные входные наборы данных.
  2. На втором шаге определяется вероятность, с которой входной набор данных принадлежит каждой группе.
  3. На третьем шаге подсчитывается время работы алгоритма на данных из каждой группы. Время работы алгоритма на всех входных данных одной группы должно быть одинаковым, в противном случае группу следует разбить ещё раз.

Среднее время работы вычисляется по формуле:
A(n)=\sum_{i=1}^{m}p_{i}t_{i}где
  • n - размер входных данных;
  • m - число групп;
  • pi - вероятность того, что входные данные принадлежат группе с номером i;
  • ti - время необходимое алгоритму для обработки данных из группы с номером i.

И разбиение на группы, и значения параметров pi и ti зависят от n.

Если вероятность попадания входных данных в каждую из групп одинакова, то среднее время работы определить по упрощённой формуле, справедливой при равной вероятности групп:
A(n)=\frac{1}{m}\sum_{i=1}^{m}t_{i}
Например, если групп пять, то вероятность попасть в первую группу такая же, как вероятность попасть во вторую, и т.д., то есть вероятность попасть в каждую группу равна 0,2.

Комментарии

Популярные сообщения из этого блога

Сравнение и арифметические операции

Операции сравнения Все операторы сравнения считаются эквивалентными, и их учитывают в алгоритмах поиска и сортировки. Важным элементом таких алгоритмов является сравнение двух величин для определения (при поиске) того, совпадает ли данная величина с искомой, а при сортировке - вышла ли она за пределы данного интервала. Операторы сравнения проверяют, равна или не равна одна величина другой, меньше они ли больше, меньше или равна, больше или равна. Арифметические операции Аддитивные операции (сложения) Включают в себя сложение, вычитание, увеличение и уменьшение счетчика. Мультипликативные операции (умножения) Включают в себя умножение, деление и взятие остатка по модулю. Умножения работают дольше, чем сложения. На практике некоторые алгоритмы считаются предпочтительнее других, если в них меньше умножений, даже если число сложений при этом пропорционально возрастает. Целочисленное умножение или деление на степень двойки образуют специальный случай. Эта операция ...

Наихудший случай

Анализ наихудшего случая говорит о максимальном времени работы алгоритма. Анализ наихудшего случая даёт верхние оценки для времени работы частей программы в зависимости от выбранных алгоритмов. При анализе наихудшего случая необходимо найти входные данные, на которых алгоритм будет выполнять больше всего работы.

Метод турниров

Метод турниров можно использовать для решения задач, в которых информация, полученная в результате первого прохода по данным, может облегчить последующие проходы. Поиск наибольшего значения Если воспользоваться им для поиска наибольшего значения, то потребуется построение бинарного дерева, все элементы которого являются листьями. На каждом уровне два элемента объединены в пару, причем наибольший из двух элементов копируется в родительский узел. Процесс повторяется до достижения корневого узла. Полное дерево турнира для фиксированного набора данных: Алгоритм поиска второго по величине элемента списка из N значений, требующий около N сравнений В результате каждого сравнения мы получаем "победителя" и "проигравшего". Проигравших мы забываем, и вверх по дереву двигаются только победители. Всякий элемент, за исключением наибольшего, "проигрывает" в точности в одном сравнении. Поэтому для построения дерева турнира требуется N-1 сравнение. Вт...