К основному контенту

Классы входных данных

Последовательность действий алгоритма определяется не в последнюю очередь входными данными.

Некоторые алгоритмы сортировки могут работать очень быстро, если входной список уже отсортирован, тогда как другие алгоритмы покажут весьма скромный результат на таком списке. А вот на случайном списке результат может оказаться противоположным.

Нельзя ограничиваться анализом поведения алгоритмов на одном входном наборе данных. Нужно искать такие данные, которые обеспечивают как самое быстрое, так и самое медленное выполнение алгоритма. Кроме того, нужно оценивать и среднюю эффективность алгоритма на всех возможных наборах данных.

При анализе необходимо рассматривать все типы возможных множеств входных значений, поскольку если ограничиться одним множеством, оно может оказаться тем самым, на котором решение самое быстрое (или самое медленное). В результате мы получим ложное представление об алгоритме.

Разбиение различных входных множеств на классы в зависимости от поведения алгоритма на каждом множестве, позволяет уменьшить количество рассматриваемых ситуаций.

Алгоритм поиска наибольшего элемента в списке из N элементов

Рассмотрим, например, алгоритм поиска наибольшего элемента в списке из N элементов:
Если список упорядочен в порядке убывания, то перед началом цикла будет сделано одно присваивание, а в теле цикла присваиваний не будет. Если список упорядочен по возрастанию, то всего будет сделано N присваиваний (одно перед началом цикла и N - 1 в цикле).

Число различных расстановок 10 различных чисел в списке есть 10! = 3 628 800. Имеется 362 800 входных множеств, у которых первое число является наибольшим; их все можно поместить в один класс. Если наибольшее по величине число стоит на втором месте, то алгоритм сделает ровно два присваивания. Множеств, в которых наибольшее по величине число стоит на втором месте, 362 800. Их можно отнести к другому классу. Видно, как будет меняться число присваиваний при изменении положения наибольшего числа от 1 до N. Таким образом, мы должны разбить все входные множества на N разных классов по числу сделанных присваиваний. Нет необходимости выписывать или описывать детально все множества, помещенные в каждый класс. Нужно знать лишь количество классов и объём работы на каждом множестве класса.

Число возможных наборов входных данных может стать очень большим при увеличении N. Например, 10 различных чисел можно расположить в списке 3 628 800 способами. Невозможно рассмотреть все эти способы. Вместо этого мы разбиваем списки на классы в зависимости от того, что будет делать алгоритм. Для вышеуказанного алгоритма разбиение основывается на местоположении наибольшего значения. В результате получается 10 разных классов. Для другого алгоритма, например алгоритма поиска наибольшего и наименьшего значения, наше разбиение могло бы основываться на том, где располагаются наибольшее и наименьшее значения. В таком разбиении 90 классов. Как только мы выделили классы, мы можем посмотреть на поведение алгоритма на одном множестве из каждого класса. Если классы выбраны правильно, то на всех множествах входных данных одного класса алгоритм производит одинаковое количество операций, а на множествах из другого класса это количество операций скорее всего будет другим.

Вероятности

Алгоритмы анализируются в зависимости от входных данных, а для этого необходимо оценивать, насколько часто встречаются те или иные наборы входных данных. Вероятность того, что входные данные удовлетворяют тем или иным условиям представляет собой число в интервале между нулем и единицей. Вероятность 0 того или иного события означает, что событие не произойдёт никогда, а вероятность 1 - что оно произойдёт наверняка.

Если нам известно, что число различных возможных значений входа в точности равно 10, то мы можем с уверенностью сказать, что вероятность каждого такого входа заключена между 0 и 1, и что сумма всех этих вероятностей равна 1, поскольку один из них наверняка должен быть реализован. Если возможности каждого из входов одинаковы, то вероятность каждого из них равна 0,1 (один из 10, или 1/10).

По большей части анализ заключается в описании всех возможностей, а затем мы будем предполагать, что все они равновероятны. Если общее число возможностей равно N, то вероятность реализации каждой из них равна 1/N.

Комментарии

Популярные сообщения из этого блога

Сравнение и арифметические операции

Операции сравнения Все операторы сравнения считаются эквивалентными, и их учитывают в алгоритмах поиска и сортировки. Важным элементом таких алгоритмов является сравнение двух величин для определения (при поиске) того, совпадает ли данная величина с искомой, а при сортировке - вышла ли она за пределы данного интервала. Операторы сравнения проверяют, равна или не равна одна величина другой, меньше они ли больше, меньше или равна, больше или равна. Арифметические операции Аддитивные операции (сложения) Включают в себя сложение, вычитание, увеличение и уменьшение счетчика. Мультипликативные операции (умножения) Включают в себя умножение, деление и взятие остатка по модулю. Умножения работают дольше, чем сложения. На практике некоторые алгоритмы считаются предпочтительнее других, если в них меньше умножений, даже если число сложений при этом пропорционально возрастает. Целочисленное умножение или деление на степень двойки образуют специальный случай. Эта операция ...

Наихудший случай

Анализ наихудшего случая говорит о максимальном времени работы алгоритма. Анализ наихудшего случая даёт верхние оценки для времени работы частей программы в зависимости от выбранных алгоритмов. При анализе наихудшего случая необходимо найти входные данные, на которых алгоритм будет выполнять больше всего работы.

Метод турниров

Метод турниров можно использовать для решения задач, в которых информация, полученная в результате первого прохода по данным, может облегчить последующие проходы. Поиск наибольшего значения Если воспользоваться им для поиска наибольшего значения, то потребуется построение бинарного дерева, все элементы которого являются листьями. На каждом уровне два элемента объединены в пару, причем наибольший из двух элементов копируется в родительский узел. Процесс повторяется до достижения корневого узла. Полное дерево турнира для фиксированного набора данных: Алгоритм поиска второго по величине элемента списка из N значений, требующий около N сравнений В результате каждого сравнения мы получаем "победителя" и "проигравшего". Проигравших мы забываем, и вверх по дереву двигаются только победители. Всякий элемент, за исключением наибольшего, "проигрывает" в точности в одном сравнении. Поэтому для построения дерева турнира требуется N-1 сравнение. Вт...